
Peter Lemenkov
Presented by

Erlang & Telephony

Erlang & Telephony

Agenda

1. A very common VoIP issue

2. ...and a traditional approach.

3. How to solve it better with Erlang?

A common VoIP issue
•IPv4 + UDP + NAT + Lots of ports (RTP,

RTCP, audio, video)

•IPv6 isn't going to fix that fully.

•Transcoding

• Lawful interception

•Dumb (proprietary) hardware clients

•Stats retrieval

•Prepaid solutions

A traditional approach
•Setup some MiTM component

•SIP Back-2-Back UA + RTP proxy = Session
Border Controller

• Just a single RTP proxy

• With in-kernel processing (using netfilter, which is
fast but feature-poor)

• With processing in userspace (somewhat slow, but
feature-rich)

•Rely on STUN/TURN/ICE which WON'T
work reliably (compare Google Talk with
Skype being behind the NAT)

Enter RTPproxy
•Simple (somewhat outdated) control

protocol.

•Userspace RTP processing.

•Written in plain portable C (fast in terms
of CPU usage per client).

•Reliable and proven.

Erlrtpproxy
•Userspace RTP/RTCP processing

•Written in Erlang (easily extensible)

•More than just a dumb proxy

•Transcoding

•Music-on-Hold and RTP injection

•HTTP server for stats and fine tuning

•SRTP/ZRTP using Erlang crypto library (w.i.p.)

•RADIUS notifications

•Events logging via syslog

What about performance?
•Somewhat slow (~10-15% slower) in

terms of CPU per Client (it does more and
it still not well optimized).

•A way too better in terms of scalability

•No command reply penalty due to number of
clients.

•No additional latency after a few hundred of
clients (“few hundred” is a practical limit for
RTPproxy).

• Faster replies (~ 10 times faster than
RTPproxy)

Conclusion (a techie PoV)
•Just rewrite in Erlang and you'll get linear

scalability for free.

•If you do “just rewrite in Erlang” you'll
probably loose some CPU cycles. Ask Max
Lapshin about possible optimizations
(next talk).

•Much smaller and cleaner codebase
(especially with regards to protocol
parsing)

•Linear and predictable resource
requirements – CPU, memory, NIC
throughput.

Conclusion (an ISV view)
•No matter what your customer wants –

you can implement it blazingly fast.

•Opensourcing was a good idea – I've got
a lots of bugreports, use cases, and
random ideas.

•Reliable and rock-solid – I rebooted it
twice after the installation.

• [petro@mediapro ~]$ uptime

• 15:53:18 up 328 days, 16:53, 1 user, load
average: 0.47, 0.49, 0.54

Links
•http://www.erlang.org/

•http://rtpproxy.org/

•http://mediaproxy.ag-projects.com/

•http://www.2p.cz/en/netfilter_rtp_proxy

•https://github.com/lemenkov/erlrtpproxy

http://www.erlang.org/
http://rtpproxy.org/
http://mediaproxy.ag-projects.com/
http://www.2p.cz/en/netfilter_rtp_proxy
https://github.com/lemenkov/erlrtpproxy

Questions?

lemenkov@gmail.com
Contact:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

