Erlang & Telephony

Presented by
Peter Lemenkov

Erlang & Telephony

A€ A"

IS SUCH A THING ; o
EVEN POSSIBLE? - Vi) L

Agenda

1. A very common VolIP issue

2. ...and a traditional approach.
3. How to solve it better with Erlang?

A common VolIP issue

° |Pv4 + UDP + NAT + Lots of ports (RTP,
RTCP, audio, video)

® |[Pv6 isn't going to fix that fully.

* Transcoding

e Lawful interception

* Dumb (proprietary) hardware clients
e Stats retrieval

* Prepaid solutions

A traditional approach

® Setup some MITM component

e SIP Back-2-Back UA + RTP proxy = Session
Border Controller

* Just a single RTP proxy

* With in-kernel processing (using netfilter, which is
fast but feature-poor)

 With processing in userspace (somewhat slow, but
feature-rich)

® Rely on STUN/TURN/ICE which WON'T
work reliably (compare Google Talk with
Skype being behind the NAT)

Enter RTPproxy

® Simple (somewhat outdated) control
protocol.

® Userspace RTP processing.

e \Written in plain portable C (fast in terms
of CPU usage per client).

® Reliable and proven.

Erlrtpproxy

® Userspace RTP/RTCP processing
e \Written in Erlang (easily extensible)

® More than just a dumb proxy

* Transcoding

* Music-on-Hold and RTP injection

e HTTP server for stats and fine tuning

e SRTP/ZRTP using Erlang crypto library (w.i.p.)
* RADIUS notifications

* Events logging via syslog

What about performance?

® Somewhat slow (~10-15% slower) in
terms of CPU per Client (it does more and
it still not well optimized).

® A way too better in terms of scalability

* No command reply penalty due to number of
clients.

* No additional latency after a few hundred of
clients (“few hundred” is a practical limit for
RTPproxy).

* Faster replies (~ 10 times faster than
RTPproxy)

Conclusion (a techie PoV)

® Just rewrite in Erlang and you'll get linear
scalability for free.

° |f you do “just rewrite in Erlang” you'll
probably loose some CPU cycles. Ask Max
Lapshin about possible optimizations
(next talk).

® Much smaller and cleaner codebase
(especially with regards to protocol
parsing)

® Linear and predictable resource
requirements - CPU, memory, NIC

Conclusion (an ISV view)

® No matter what your customer wants -
you can implement it blazingly fast.

® Opensourcing was a good idea - I've got
a lots of bugreports, use cases, and
random ideas.

® Reliable and rock-solid - | rebooted it
twice after the installation.

* [petro@mediapro ~]$ uptime

e 15:53:18 up 328 days, 16:53, 1 user, load
average: 0.4/, 0.49, 0.54

o
A X LX XX TX L XL LR

.l...ﬂp.....i.‘...‘

nu,'o NtEne- Haithub
. Nt

bl
..
a

GI&)'"GILDI‘

.C

XX
.
.
-\

v
CY
)
g

OSSO IEIwIRY b yaE wdvEe' /000000
..l.l.....lI............l...l...
!!UW‘P'.Q'DO.""QF“Q"%,ggﬂizzz

myermenkov/erirtpp!

http://www.erlang.org/
http://rtpproxy.org/
http://mediaproxy.ag-projects.com/
http://www.2p.cz/en/netfilter_rtp_proxy
https://github.com/lemenkov/erlrtpproxy

ns?

XX X X X X X X X T X X T T XL
t-clnncqpqpoaq,otocqpqpqpqpnoon.cqpotqpqp-tococoquqpotoc
X X X X X X X X X o X X X X X X o X X X X X o X
0000000 ENENANANENENANANENANANANANANADNANENADNANANENANADAN A
i....ll...i..tit.titcoqggpoo..o.ooo.oocncoo.oocooncoono.o

St S N L N L L L. e L N L A L AL A L AL b A L A L AL AL AL A

8-

ues

-]]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

